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Abstract

We present an analysis of envelope perturbations evolv-
ing in the limit of a fully space-charge depressed (zero
emittance) beam in periodic, thin-lens focusing channels.
Both periodic solenoidal and FODO quadrupole focusing
channels are analyzed. The phase advance and growth rate
of normal mode perturbations are analytically calculated
as a function of the undepressed particle phase advance to
characterize the evolution of envelope perturbations.

INTRODUCTION

The KV envelope equations are often employed to model
the transverse evolution of the envelope of beam particles
in intense beam transport channels[1]. For periodic focus-
ing channels, there have been no fully analytical studies
of perturbations in the beam envelope evolving about the
matched beam envelope. Here we analytically calculate
properties of small-amplitude elliptical envelope perturba-
tions in the limit of full space-charge depression for several
periodic thin-lens transport channels. Because the thin-lens
model provides a reasonable approximation to the focusing
effects of more realistic applied focusing elements, results
derived provide a guide to the properties of envelope per-
turbations associated with space-charge-dominated beams.

ENVELOPE MODEL

The KV envelope equations for a fully depresed coast-
ing beam with elliptical edge radii �������	� 
���������������� 
��  � aligned along the transverse � and � axes are [2, 3]��� ������ �"!$# � �%��� � � �%� �'& �)(� � �%����! � � ��� � �+*	� (1)

where , ranges over � and � , ( is the dimensionless beam
perveance, and � is the axial coordinate. The equations (1)
apply directly to a beam in a quadrupole focusing channel
with # �-� &.# � , but for solenoidal focusing one has to
assume zero beam canonical angular momentum with # �/�# � and interpret all results in a rotating Larmor frame[2,
App. A]. The equations can be written in terms of scaled
sum and difference coordinates 021 � � � �23 � � �54	� �76 �)( �
as � 0 � �8 ��� �"! � # � �%��� 0 8 �%���9& :0 8 ��� � �;*��� 0 � �< ��� �"! � # � �%��� 0 < ��� � �;* (2a)

=
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for solenoidal focusing, and� 0 � �8 �%����! � # � �%� � 0 < ��� �'& :0 8 ��� � �;*	�� 0 � �< ��� �"! � # � ��� � 0 8 ��� � �;* (2b)

for quadrupole focusing. In free drift regions # � ��� � �# � �%� � �>* , and the equations can be integrated by using
constancy of envelope Hamiltonian0 � 8 �%� �'&@?BA 0 8 �%��� � const (3)

to yield[2]?CA 0 8 � * �0 8 �%� � � 0 � 8 � * �'& D7EGF5HJI <JK�LNM EGF5H 0 �8 � * �O!QP RJS TU IWV L �6 X 0 8 � * ��Y�Z  �
(4a)0 < ��� � � 0 < � * �[!\� 0 � < � * � � (4b)

where

EOF�H ��]7� � EGF5^ ��_`]a�54�_ is the imaginary error function.
Without loss of generality[2, Sec. II E], we assume that

the length of the free drift interval between the two adjacent
thin lenses is � as in Fig. 1. By symmetry we need only to
consider the envelope evolution of the beam between two
neighboring lenses only. We take the first lens to be at axial
location � � & : and the second one to be at � � : . We
also assume that in alternating gradient channel the second
lens (at � � : ) is focusing in � . Then for both thin lens
solenoids and quadrupoles we take near � � :# � �%� � � Kb�c ���.& : � � (5)
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FIG. 1: Matched beam envelopes dfe9g�h�i and transport lattice for
(a) solenoid, and (b) FODO quadrupole thin-lens channels.



where � � const is the thin lens focal length and c ��� � is
the Dirac delta-function. The focal length � can be related
to the undepressed particle phase advance over one lattice
period � V as [2, Sec. II D]Kb � D ����� A ��	� � solenoidal focusing,�
� A ��� � quadrupole focusing.

(6)

We analyze the perturbations of the envelope coordinate
vector � �%��� � � 0 8 ��� � � 0 �8 �%� � �� ��� � 0 < �%��� �� ��� � 0 � < ��� �5�
from the mid-drift at � � * to the next mid-drift at � � � .
Here,  ��� � � : when the next lens to be traversed is focus-
ing, and  ��� � � & : when the next lens is defocusing.

PERTURBATIVE ANALYSIS

To analyze the first-order perturbations in the coordi-
nate vector � �%� � we compute the Jacobian matrix � � *	� � �
where � ��� K�� �  � ��� � �%�  �54 � � ��� K � and derivatives are
evaluated for a matched envelope. Since � � * � � � is sim-
plectic, then the first-order perturbations are stable if and
only if all eigenvalues of � lie on the unit circle � ] � � : .

In calculating � � * � � � , we henceforth denote � ��� 3 * ���? �����
� 1 V � �%� ! c � to represent the discontinuous action of
the thin lenses on the beam envelope functions. To exploit
lattice symmetries, we split the interval � *	� � � into three
parts � *	� : & * � , � : & *	� : ! * � and � : ! *�� � � , and calculate� � *	� � � as � � * � � � � � � : ! * � � � � � : & * � : ! * � � � * � : &* ��� By symmetry, � � : ! * � � � � � � * � & : ! * � <[K . Thus,

� � * � � � � � b ��& : ! * � <[K ��� � b � : & * � � (7)

where �!� � � � : & * � : ! * � is the “singular Jacobian”
associated with the thin lens focusing kick, and � b ��� � �� � * � � � for � � �#" : is the “free drift Jacobian” associated
with the half-drift.

To evaluate � � , we consider the action of the thin lens
according to Eqs. (2) and (5). We obtain

��� � $%%
&
: * * *& Kb : * ** * : ** * & Kb :

')((
* � ��� � $%%

&
: * * ** : & Kb **>* & : *Kb * * & :

')((
* (8)

for solenoidal and quadrupole channels respectively.
To evaluate � b �%� � , the free expansion solutions in

Eqs. (4) and the matched beam symmetry condition0 �8 � * � �;* are employed to evaluate Jacobian elements:

� b �%��� � $%%%
&
R U I � L < � RJSU I � LR U IWV L � 0 8 � * � 0 �8 �%��� * *& � R U IWV L R U I � L R U IWV LR U I � L * ** * : �* * * :

')(((
* � (9)

To complete the evaluation of � b � : & * � , we find rela-
tions of the elements to � V by deriving equations connect-
ing 0 8 � : & * �+� 0 8 � : � , 0 �8 � : & * � , and 0 8 � * � to these
quantities for the matched beam envelope. By symmetry,
for a periodic, matched envelope0 �1 � : & * � � & 0 �1 � : ! * � � (10)

For solenoids, Eqs. (2a) and (5) can be integrated once
about � � : to obtain0 �1 � : ! * � � 0 �1 � : & * � & Kb 0 1 � : ���
Combining these constraints with the matching conditions
(10), we get 0 �1 � : & * � � K b 0 1 � : �,� (11)

Similarly, using Eqs. (2b) and (5) for alternating gradient
focusing and matched beam symmetries (10), we obtain0 �1 � : & * � � K b 0.- � : �,� (12)

The solenoidal and quadrupole matching conditions in
Eq. (12) for 0 8 can be expressed as/0 0 8 � : � �+� 0 �8 � : & * � � (13)

where
/0 � D Kb � : &21,3 � � V � solenoidal focusing,K b T � K4 � : &21,3 � � V � � quadrupole focusing.

Applying Eqs.(3) between � � * and � � : & * with the
matched beam condition 0 �8 � * � �+* leads to0 8 � : � � 0 8 � * � P RJS TU I K < V L � (14)

Using Eqs. (13) and (14) in Eq. (4) then yields/0 �+� 6 X P < RJS TU I K < V L 0 �8 � : & * � EOF�H 0 �8 � : & * ��� (15)
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FIG. 2: Phase advances ( 5�e ) and growth factors ( 67e ) for the
breathing and quadrupole modes for a thin-lens solenoidal focus-
ing channel and a fully depressed beam. Continuous focusing
model predictions for 5 e are superimposed (dashed curves).



Equations (13)–(15) provide the needed constraints to
relate the elements of � b � : & * � to � V . Elements of� b ��& : ! * � can be calculated from these constraints using
the matched beam symmetries0 8 ��& : � � 0 8 � : � � 0 �8 � & : ! * � � & 0 �8 � : & * ��� (16)

For solenoidal focusing 0 1 are uncoupled, and� � * � � � is of block diagonal form with � � * � � � ���� U IWV��  L VV ��� IWV��  L�� � where � 1 � * � � � are �
	@� symplectic
matrices that can be independently analyzed for the stabil-
ity of perturbations. We compute � 1 � * � � � from Eq. (7):

�� g���� �Oi�� ���� U�������� � � S U � �!� �#" �� U$� " � �Od � g���i d&%� g('*),+-� i�. � U$� " � � U�� �!��� � U�� " �� U�� ����� /0 ��� �� )1�' �2 ) /03���� U�� ���4� � S U � �5� " �� U�� " � �Od � g�� i d&%� g()6'7� i' �. � U$� " � � U$� ��� � U$� " �� U$� ��� /0
� �� 8:9<; 5 " '7= d % .� g()>'���i 8?9@; . gBA �. i � � T U � " �2DC )E'F�Gd % .� g()6'7� i�G� 2� T U � " � 8?9@; . g A �. i C )6' 8:9<; 5 " +�= d&% .� g()6'F��i 8?9@; . g A �. i�G 8?9<; 5 " 'F= 8?9@; . g A �. i d&% .� g()6'���i /0IH

� � g���� �Oi��KJ 8?9<; 5 " )�+ 8:9<; 5 "'*)>' 8?9<; 5 " 8?9<; 5 "MLON
(17)

Eigenvalues P�1 of the matrices � 1 � * � � � areP 8 � 1 3 � � V &RQ 0 � 8 � : & * � 1 3 �  � �	� � 3 � _ 1,3 � � �	� � �S�T � : & � 0 � 8 � : & * � � � �
� A  � �	� �O! � 0 � 8 � : & * � 1,3 �` � �	� � �P < � 1 3 � � V 3 _ �
� A � V �
(18)

Real-valued mode phase advances �N1 and growth factorsU 1 per lattice period satisfy PN1 �VU 1 P�W ��X . With proper
branch selection[2] we get

� 8 �ZY F:[ P 8 with ! sign in Eq. (18) �� < � � V � (19)

and growth factors asU 8 � D : � stable �T � � 1 3 � � V &\Q 0 � 8 � : & * � 1 3 �` � ��� � �  & : � unstable �U < � : �
These solutions are plotted in Fig. 2 as a function of � V .
The extent of the band of instability ( U 8Z]� : ) in � V can be
calculated from U 8 directly as

� V_^ M Y F 1 1 3 �a` : &
b � XP EGF5H :6 �dc � X Yfe\g :):@h �ji :�kml � :@n * l?o �
The stability of quadrupole focusing can be investigated

analogously except that we must work with the full Q 	 Q Ja-
cobian matrix � � * � � � . After multiplying out the matrices
in Eq. (7) and calculating the eigenvalues using the con-
straints in Eqs. (12)–(15) yieldsP �p & K /0 3 _ T p /0 ! � : & K /0 � � /0 ! n 0 � 8 � : & * � � � (20)

where p � 3 T � : & K /0 � � : & K /0 & n 0 � 8 � : & * � � and
/0

is
given by Eq. (13). These eigenvalues can be employed
to calculate phase advances ( �rq and ��s ) and growth fac-
tors ( U q and U s ) of the breathing and quadrupole modes as

� q�t s � �>Y Fu[ P and U q!t s �wvv P  vv (see Fig. 3). Using Eqs.
(15) and Eq. (20) we find numerically that the instability
band is located on the interval � V ^ � : � : � * k�k l � :<n * l � .
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FIG. 3: Phase advance ( 5 s and 5 q ) and growth factors ( 6 s
and 6 q ) for the breathing and quadrupole modes for a thin-
lens FODO quadrupole focusing channel and a fully depressed
beam.Continuous focusing model predictions for 5�e are super-
imposed (dashed curves).


